
人工智能

搜索算法

对于搜索算法，评价指标为：完备性、最优性、时间复杂度和空间复杂度。

开表（open list）： 在树搜索算法中，集合F用来保存搜索树中可用于下一步探索的所有候选节点，这
个集合被称为 边缘（fringe）集合，有时也称为开表。

深度优先搜索不具备完备性，在有环路的情况下，算法不会停止。

启发式搜索

启发式搜索指搜索过程中利用与所求解问题相关的辅助信息，其代表算法为贪婪最佳优先搜索，A*搜
索。

辅助信息

评价函数evaluation function, f(n)。从当前节点出发，根据评价函数选择后续节点。
启发函数heuristic function, h(n)。计算从节点n到目标节点之间所形成路径的最小代价值。一般将
两点之间的欧式距离作为启发函数。

贪婪最佳优先搜索

评价函数f(n)=启发函数h(n)，不保证最优性。

A*算法

评价函数f(n)=g(n)+h(n)，g(n)表示从起始点到节点n的开销。

对抗搜索

α-β剪枝

	 α-β剪枝搜索是基础MAX-MIN搜索的剪枝策略。

假设一个位于MIN层的节点m，已知其可以收到的收益为α。其兄弟节点的后代节点n的后代节点被访问
一部分后，知道节点n能够向上一层MAX节点反馈收益小于α，则节点n的后续后代节点不需要继续扩
展。

af://n0
af://n2
af://n6
af://n14
af://n16
af://n18
af://n19

反之，对于MAX层节点m可以接收到收益为β，其兄弟节点的后代节点n的扩展节点可以获得的收益大于
β，则其后续子节点不需要继续扩展。

αβ值更新： 对于MAX节点，如果其孩子节点MIN的收益大于当前的α值，则将α值更新为该收益；对于
MIN节点，如果其孩子节点MAX的收益小于当前的β值，则将β值更新为该收益。根节点MAX的α和β值分
别初始化为-∞和+∞。

随着搜索算法不断执行，每个节点的α值和β值不断更新，大体来说，α值逐渐增加，β值逐渐减小。如果
一个节点的α>β值，则该节点尚未被访问的后续节点就会被剪枝，因而不会被智能体访问。

蒙特卡洛树搜索

AlphaGo Zero的基础思想，基本思路是，对于当前的一种状态，做以下几步：

1. 向前思考一步，即自己行动，对于每个当前可选的行动进行评估，选取最优的行动（如果有行动没
有采取过，那么这个行动最优）。

2. 如果选取的行动从来没有采取过，那么采取后进行随机行动直到结束，然后根据结果调整从初始状
态到这次行动的一系列树点。

3. 再向前思考一步，选取1步中最优行动的下一行动，（围棋中是对手行动），此时重复1步骤。（如
果是博弈，那么此时最优的行动就是收益最小的行动）。

4. 重复k次步骤2，即向前思考k步。然后回到1的情况，选取当前情况下最优的一步。

对于代码而言，树的结点保存四个信息：

1. 当前行动（对于棋类，就是落子的位置）。
2. 收益。
3. 这个状态经历的总次数。
4. 孩子节点。

第一次遍历时，root就是当前状态，它的孩子就是目前可以落子的所有位置。然后一开始所有的点的收
益和经历次数都是0。蒙特卡洛树上长出来的所有点都是未来的预测状态，所以都是0/0.

误区一：对于当前的一个状态，这个状态可能出现在之前的状态的蒙特卡洛树上，但是这两者没有
关系。按这个状态为根节点，重新进行蒙特卡洛树搜索过程。

对于当前可选择行动的评估，一般使用UCB1算法，即

N就是收益，n就是经历总次数。

例：

af://n27

初始状态：

向前看1步：

然后进行反向传播修改经历的状态，用来表示选择这一个行为带来的收益影响：

然后删除随机探索的这一部分。

进行第二次迭代：

进行第三次迭代：

然后进行探索：

然后反向传播影响。

然后进行下一次迭代：

然后反向传播影响。

当迭代停止，计算S_1和S_2的UCB1值来判断选取哪个最优。

其实蒙特卡洛树搜索就是不断向前看n步，然后再具体判断对于当前情况，哪一种行动最优。这比
直接贪心选择当前最优要强，但是问题是，这棵树的宽度会非常大，即有时候对于当前情况的选择
太多的。受到计算资源的限制，我们需要牺牲树的高度，即我们总是不能看到太远的情况。

机器学习

机器学习的基础目标为，预测值与正确值（标签）的差距最小化，分为以下三种：

经验风险最小化：min .
期望风险最小化：min .
结构风险最小化：为了防止过拟合，在以上两种最小化中加入模型复杂度的正则化项或者惩罚项
(penalty term)：min .

监督学习两种方法：

判别模型。直接学习判别函数f(x)或者条件概率分布P(Y|X)作为预测的模型。
生成模型。从数据中学习联合概率分布P(X,Y)，通过似然概率P(X|Y)和P(Y)的乘积来求。

af://n77

损失函数：

均方误差损失函数

交叉熵损失函数

假定p和q是数据x的两个概率分布，通过q来表示p的交叉熵可如下计算：

交叉熵越小，两个概率分布p和q越接近。

假设y为数据x的真实分布， 表示模型预测的分布，则对于数据x，交叉熵损失函数定义为：

cross entropy = .

如果将softmax和交叉熵损失函数相结合，会对偏导的计算带来极大便利。假设所预测的值经过
softmax层后为(0.34,0.46,0.20)，如果选择交叉熵损失函数来优化模型，则这一层的偏导值为
(0.34-1,0.46,0.20)=(-0.66,0.46,0.20).

梯度下降

梯度下降计算所有样本的误差，使得损失函数最小化。

随机梯度下降： 由于梯度下降法需要计算所有样本，消耗大，随机梯度下降旨在利用一份或者少样本计
算误差来最小化损失函数。这样计算会很快。

决策树

信息熵entropy

假设样本集合D有K个样本，发生的概率分别为 ，则K个信息的信息熵为：
。

信息熵越小，说明D包含的信息越确定，即D的纯度越高。

决策树的思想就是，随着树不断分支，该分支下的样本信息熵越来越小，最终包含相同类别。

那么决策树具体按照什么标志来决定接下来划分什么属性呢？信息增益。

信息增益通过信息熵来计算， 得到各个属性的信息熵，增

益大的先进行分支。

Boosting

思想：将若干弱分类器组合形成一个强分类器。

强可学习模型：模型能够以较高精度对绝大多数样本完成识别分类。
弱可学习模型：模型仅能对若干部分样本完成识别与分类，精度略高于随机。

这两种学习模型是等价了，如果存在一个弱可学习模型，可以将其提升(Boosting)为一个强可学习模
型。

Ada Boosting算法训练一系列弱分类器，将这些弱分类器线性组合得到强分类器。其中，对某数据的识
别分类有这些弱分类器进行线性投票组合，结果服从多数弱分类器的分类结果。

如果某个样本无法被第m个弱分类器分类成功，则需要增大该样本的权重，否则减少该样本的权重。这
样，被错误分类的样本会在训练第m+1个弱分类器时重点关注。

即在每一轮学习过程中，Ada Boosting算法均在 重视当前尚未被正确分类的样本。

af://n105
af://n108
af://n117

降维

LDA线性判别分析

Fisher提出。LDA利用类别信息，将一组高维数据投影到一个低维空间上，在低维空间中使得同一
类别样本尽可能靠近，不同类别样本尽可能远离。即”类内方差小，类间间隔大“。

LDA降维步骤如下：

1. 计算数据样本集中每个类别样本的均值。
2. 计算类内散度矩阵 和类间散度矩阵 。
3. 根据 来求解前r个最大特征值所对应的特征向量，构成矩阵W。
4. 通过W将原样本映射到r维。

PCA主成分分析

主成分分析的思想是将n维特征数据映射到m维空间，去除原始数据之间的一些冗余性。

我们对原样本求协方差矩阵，然后求其特征值，求解对应的特征向量，构成矩阵W。

NMF非负矩阵分解

该方法将非负大矩阵分解成两个非负小矩阵。

主成分分析方法可以实现这一点，不过主成分分析不要求原矩阵非负。到那时在很多实际情况中如
图像像素和单词-文档矩阵中自然不存在为负数的元素，因此，对非负矩阵的分解很有用。

MDS多维尺度法

MDS保持原始数据之间两两距离不变。MDS计算原始数据两两之间的距离，形成一个距离矩阵。
不过MDS需要知道这样的距离矩阵，所以无法对新数据集直接进行降维，这被称为”out-of-
sample”问题。

LLE局部线性嵌入

PCAMDS都属于线性降维方法，LLE是一种非线性降维方法。LLE的基本假设是：一个流形的局部可
以近似于一个欧氏空间，每个样本均可以利用其邻居进行线性重构。即假设数据是局部线性的（即
使数据的原始高维空间是非线性流形嵌入）。LLE使用局部线性来逼近全局非线性。

模型参数估计

最大似然估计

假设n个数据样本从参数为θ的某个模型中以一定概率独立采样得到，那么最大似然估计就是求θ使
得这个参数得到的模型出现这些样本的概率最大。 .

最大后验估计

，对其取对数，得到 ，可见，最大
后验估计与最大似然估计相比，多了一项先验概率 。

期望最大化EM

af://n126
af://n156

EM算法是一种重要的用于解决含有隐变量（latent variable）问题的参数估计方法。分为求取期望
E步骤和期望最大化M步骤。

1. E步：先假设模型参数初始值，估计隐变量取值。
2. M步：基于假设的数值，最大化“拟合”样本数据，更新模型参数。
3. 不断迭代M步骤，直到更新参数收敛。

深度学习

卷积神经网络

循环神经网络

RNN

在每一时刻t，循环神经网络单元会读取当前输入数据 和前一时刻输入数据对应的隐式编码结果
，一起生成t时刻的隐式编码结果 。

按照时间将循环神经网络展开后，可以得到一个和前馈神经网络类似的网络结构。这个网络可以利
用反向传播来优化参数。称为“沿时间反向传播（BPTT）”。

由于循环神经网络每个时刻都有一个输出，所以在计算循环神经网络的损失时，通常需要将所有时
刻上的损失累加。

求偏导时，需要将前面时刻的W依次求导，然后再将求导结果进行累加：

对于长序列，这样的累积会使得参数求导结果很小，引发梯度消失问题。

LSTM

为了解决传统RNN的梯度消失，提出了LSTM长短时记忆模型。它引入了 内部记忆单元 和 门 两种
结构。这里，内部记忆单元可视为“历史信息”的累积。而门则一般有 输入门input gate，遗忘门
forget gate，输出门output gate。

输入门信息输出： .

遗忘门信息输出： .

输出门信息输出： .

内部记忆单元信息输出： .

隐式编码输出： .

af://n174
af://n175
af://n176

对于内部记忆单元，存在加法，遗忘门的求导结果至少为 ，如果遗忘门选择保留就状态，则导数
等于1，使得梯度不为0，避免了梯度消失。

从整体来看，内部记忆单元c类似长时记忆，而隐式编码h类似短时记忆。

强化学习

马尔可夫奖励过程

。

为折扣系数，范围[0,1]。即认为，越是遥远的未来的奖励对现在的反馈贡献越小。

对于R，一般而言，如果此时到达终点，则获取回报，否则为0。

策略学习

策略函数表示处于某个状态采取某种行动以获得最大回报值。

价值函数（value function）： ，即在第t步状态为s时，按照策略
行动后在未来所获得的回报的期望。
动作-价值函数（action-value function）： 表示在第
t步状态为s时，按照策略 采取动作a后在未来获得的回报值。

这样，策略学习转换为一个优化问题：寻找最优策略 ,使得对任意状态， 最大。

贝尔曼方程

也称动态规划方程。

，即在状态s采取动作a的概率×采取动作a后带来的回报。

，即在状态s采取动作a的概率×（采取a进入
s’得到的回报+处于s’可以得到的回报）。

策略评估方法

动态规划

我们将贝尔曼方程中的V的算式中的q替换为其算式，就得到了动态规划方法：

af://n198
af://n219

缺点是需要提前知道状态转移概率。同时无法处理状态集合无限大的情况，比如状态连续。

蒙特卡洛采样

缺点是：状态集合比较大时，状态可能非常稀疏，不利于估计期望，同时获取回报可能需要的周期
很长。

时序差分

其更新V值的方式为： ，表示原来的价值函
数与学习得到的价值函数值共同更新价值函数。

Q-learning

设定，从s1到s9，如果下一状态为s9，则回报R为1，若为sd，则回报R为-1，其余为0。

首先要初始化q函数，我们用a/b表示q(s,上)=a,q(s,右)=b。

为了防止初始值设置不合理导致不断重复执行同一策略没有提升，我们使用e贪心策略，每次以概率e选
取随机动作。

af://n234

Deep Q-learning

Q-learning由于使用Q-table无法处理状态连续或无穷多的情况，所以我们使用神经网络来代替Q-table
做策略。

af://n239

	人工智能
	搜索算法
	启发式搜索
	贪婪最佳优先搜索
	A*算法

	对抗搜索
	α-β剪枝
	蒙特卡洛树搜索

	机器学习
	梯度下降
	决策树
	Boosting
	降维
	模型参数估计

	深度学习
	卷积神经网络
	循环神经网络

	强化学习
	策略评估方法
	Q-learning
	Deep Q-learning

